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ABSTRACT
The notions of ionicity and covalency of chemical bonds, effective atomic charges, and decomposition of the cohesive energy into ionic and
covalent terms are fundamental yet elusive. For example, different approaches give different values of atomic charges. Pursuing the goal of
formulating a universal approach based on firm physical grounds (first-principles or non-empirical), we develop a formalism based on Wan-
nier functions with atomic orbital symmetry and capable of defining these notions and giving numerically robust results that are in excellent
agreement with traditional chemical thinking. Unexpectedly, in diamond-like boron phosphide (BP), we find charges of +0.68 on phosphorus
and −0.68 on boron atoms, and this anomaly is explained by the Zintl–Klemm nature of this compound. We present a simple model that
includes energies of the highest occupied cationic and lowest unoccupied anionic atomic orbitals, coordination numbers, and strength
of interatomic orbital overlap. This model captures the essential physics of bonding and accurately reproduces all our results, including
anomalous BP.
Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0202481

I. INTRODUCTION

All chemical systems are described by quantum mechanics, and
all types of bonding have common origins in electronic exchange
and correlation interactions, which fundamentally are of electro-
static nature. However, a full quantum-mechanical treatment of
the electrons and nuclei is cumbersome and brings limited insight
into such complex systems as molecules and solids. A more sim-
plistic view, focusing on atoms and bonds, is particularly fruit-
ful. Depending on how the electron density is redistributed, one
obtains different types of bonding, such as ionic (with charged
atoms and long-range interactions), covalent (with electron accu-
mulation on bonds, and only short-ranged interactions), metallic
(with nearly homogeneous valence electron density; this type of
bonding can be viewed as an extreme case of multicenter covalent
bonding), and van der Waals (weak interactions due to the inter-

actions between instantaneous atomic multipoles). These types of
bonding can coexist—for example, van der Waals interactions exist
in absolutely all chemical systems, and ionic bonding is always mixed
with some degree of covalency. This simple classification has allowed
researchers to understand an enormous range of facts and phenom-
ena, including structures, spectra, and properties. Let us give some
examples.

Covalent bonding is directional and results in low-coordination
structures with high barriers of rearranging the structure and, con-
sequently, widespread metastability. Three-dimensional networks
of strong covalent bonds produce materials with the highest shear
moduli and hardnesses. Metallic bonding is non-directional and
produces structures with high coordination numbers, often based
on close packings, with low barriers of phase transitions, low shear
moduli, and low hardnesses. Ionic bonding is also non-directional,
hence the tendency to form close-packed structures. Ionic crys-

J. Chem. Phys. 160, 144113 (2024); doi: 10.1063/5.0202481 160, 144113-1

Published under an exclusive license by AIP Publishing

 17 April 2024 09:02:37

https://pubs.aip.org/aip/jcp
https://doi.org/10.1063/5.0202481
https://pubs.aip.org/action/showCitFormats?type=show&doi=10.1063/5.0202481
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0202481&domain=pdf&date_stamp=2024-April-10
https://doi.org/10.1063/5.0202481
https://orcid.org/0000-0002-1087-1956
https://orcid.org/0000-0001-7082-9728
https://orcid.org/0000-0002-4070-2045
https://orcid.org/0000-0003-1668-3734
https://orcid.org/0000-0001-7607-6130
https://orcid.org/0000-0001-9506-8718
mailto:novoselov@imp.uran.ru
https://doi.org/10.1063/5.0202481


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

tals obey Pauling’s rules—for example, Pauling’s third and fourth
rules state that, to maximize electrostatic repulsion, the coordination
polyhedra of highly charged cations avoid face- and edge-sharing
(for covalent and metallic crystals, this is not the case).1

Due to the presence of long-range electrostatic interactions,
peculiar phenomena are observed in ionic crystals—such as pyro-,
piezo-, and ferroelectricity, where displacements of charged atoms
(due to thermal expansion, strain, or phase transitions) create elec-
tric polarization. A vibration that involves charged atoms and leads
to a change of the dipole moment strongly absorbs infrared (IR)
radiation—and IR spectroscopy is one of the most convenient
research tools. Strong infrared absorption by only molecules con-
taining charged atoms explains why H2O, CO2, and CH4 are green-
house gases, while N2 and O2 (far more abundant in the atmosphere)
are not. Related to these same long-range electrostatic interactions
are the ionic contribution to dielectric constants of crystals and the
LO–TO splitting in lattice dynamics.2 To quantitatively describe
these effects, Born dynamical charges3 are introduced. These are rig-
orous but, in general, different from static charges that are needed to
describe other properties.

Bond energy is another property directly related to the type of
bonding and atomic charges. Indeed, it is well known that the for-
mation of highly ionic compounds from low-ionicity substances is
usually highly exothermic: e.g., in such reactions as Na + 1/2Cl2
= NaCl, Mg + 1/2O2 = MgO, or the reaction essential for energy
needs of humanity: CH4 + 2O2 = CO2 + 2H2O.

Pauling4 used this fact in 1932 for quantitatively defining elec-
tronegativity of the elements. To do that, he considered molecules
with single bonds A–A, B–B, and A–B. Then, he assumed that
the A–B bond energy is equal to the sum of covalent and ionic
contributions,

EA−B = (EA−B)cov + (EA−B)ion, (1)

where the covalent energy of the bond A–B is assumed to be just the
half-sum of the energies of homoatomic covalent bonds A–A and
B–B,

(EA−B)cov = (EA−A + EB−B)/2, (2)

and the ionic energy (in units of electron-volts) is assumed to be
equal to the squared difference of electronegativities χ of atoms A
and B,

(EA−B)ion = (ΔχA−B)2. (3)

Having thus defined electronegativities, Pauling2 then pro-
posed a way to calculate the degree fi of ionicity of a bond (which
is the ratio of actual atomic charges to formal ionic charges),

fi = 1 − exp [(−Δχ)2 /4]. (4)

This formula correctly implies that fully ionic bonds do not
exist, but the degree of ionicity approaches 1 (i.e., 100%) as Δχ
increases.

The mixing of ionic and covalent components in the total bond
energy leads to the following result:5

EA−B = f 2
i(EA−B)ion + (1 − f 2

i)
1/2(EA−B) cov. (5)

Pauling’s approach is extremely simple and to first order
explains many phenomena. The concept of electronegativity turned
out to be very fruitful.1,4,6–14 However, Pauling’s original approach
has deficiencies. For some atoms, it is problematic to find a reliable
energy of the homoatomic single bond. The underlying assumptions
of Pauling’s approach are arbitrary. Even worse, for predominantly
ionic bonds, Eq. (3) overestimates the ionic part of bond energies by
several times.15

Recently, Tantardini and Oganov6 proposed an improved ther-
mochemical scale of electronegativities. They noted that Eq. (4)
contains an unphysicality—it defines the degree of ionicity solely
by the ionic contribution to the bond energy, whereas in reality,
the ratio of ionic to covalent contributions is relevant. For example,
one expects 50% ionicity when ionic and covalent contributions are
equal. This suggests that it is better to set, at variance with Eq. (3),

(ΔχA−B)2 = (EA−B)ion /(EA−B) cov. (6)

This immediately leads to the formula for bond energy,

EA−B = (EA−B)cov[1 + (ΔχA−B)2], (7)

which has been used4 for creating a new scale of electronega-
tivities. The degree of ionicity can be described with these new
electronegativities by the following formula:

fi = 1 − exp [−(Δχ)2/ k], (8)

where k = 1.4427 is obtained without any fitting, just by requiring
that when ionic and covalent contributions are equal (i.e., when
(Δχ)2 = Eion/Ecov = 1), the degree of ionicity should be 50%. The
approach of Tantardini and Oganov is more robust but still relies
on a rather arbitrary definition of the covalent contribution (2) and
formula (7) is purely heuristic.

One could conclude that, with the multitude of different defini-
tions, atomic charge is a very vague concept—but such a view would
be incorrect. Meister and Schwarz16 showed that all the numerous
definitions of the atomic charge (based on the population analy-
sis of the wavefunction, electron density partitioning, electrostatic
potentials, dipole moments, IR intensities, chemical shift of core
electron ionization energies, x-ray emission and absorption spectra,
LO–TO splitting and Born charges, bandgaps, dielectric constants,
piezoelectric constants, energy surfaces, Szigeti method,17 etc.) are
strongly interrelated. Performing principal components analysis of
the charges determined with 29 different ways, these authors showed
that this dataset has only one significant principal component. This
means that there is one single concept underlining all these def-
initions of the atomic charge. Moreover, being directly related to
so many diverse properties, this concept is extremely useful and
fundamental.

This elusive concept must be derivable quantum-mechanically.
Here, we develop a theory enabling the first-principles quantum-
mechanical calculation of ionic and covalent terms in the cohesive
energy, as well as of atomic charges. This theory is based on the
Wannier function formalism.18,19

II. METHOD
Wannier functions promise to be a new foundation of the the-

ory of chemical bonding. For example, Jiang et al.20 have provided a
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rigorous definition of the oxidation number based on Wannier func-
tions. Interestingly, their definition was dynamic (involving moving
the atoms), whereas a simpler static quantum-mechanical definition
probably can be formulated, but this has not been achieved yet.
Such a static definition is likely to exist because oxidation numbers
determine, for example, the stoichiometries of compounds.

Here, we formulate a static quantum-mechanical approach,
allowing one to extract atomic charges and calculate the ionic and
covalent contributions of the bond energy.

Let us consider a binary compound AB. Its chemical bonding
energy Ebond is usually defined as a difference of total energies of the
compound per formula unit at equilibrium volume V0 and a sum of
the energies of free atoms A and B at infinity,

E0
bond = E0

AB − (E∞A + E∞B ). (9)

From density functional theory solution, one obtains a set of
electronic eigenvalues and eigenfunctions ϵα

⃗k , ∣ψα
⃗k ⟩ and the electron

Hamiltonian can be written as

Ĥ =∑
⃗kα

∣ψα⃗k ⟩ϵ
α
⃗k⟨ψ

α
⃗k ∣ (10)

with the corresponding density matrix operator

ρ̂ =∑
⃗kα

∣ψα⃗k ⟩n
α
⃗k⟨ψ

α
⃗k ∣,

nα⃗k = θ(EFermi − ϵα⃗k).
(11)

Wannier functions ∣W i⟩ are calculated by the unitary transfor-
mation of Bloch function set ∣ψα

⃗k ⟩,

∣Wi⟩ =∑
⃗kα

∣ψα⃗k ⟩⟨ψ
α
⃗k ∣ϕi⟩, (12)

where ∣ϕi⟩ are trial atomic wave functions and, hence, ∣W i⟩ also
have the same atomic orbital symmetry. A basis set ∣W i⟩ defined by
Eq. (12) is then orthonormalized. One can say that Wannier func-
tions ∣W i⟩ are “natural” atomic orbitals for electrons in a crystal and
index i runs over atomic quantum numbers nl (1s, 2s, 2p, 3p, 3d, . . .).
Equation (12) is one of the possible choices for unitary transforma-
tion of Bloch function set ∣k⟩, and it was chosen to obtain Wannier
functions having the symmetry of atomic orbitals as is usually done
in the analysis of chemical bond. It is known that Wannier func-
tions are not unambiguously defined. The projection procedure in
Eq. (12) solves this problem, giving uniquely defined Wannier func-
tions that are most similar to atomic orbitals, fully compatible with
both atomic limit and solid-state calculations, and enabling us to
separate atomic and bonding effects.

Wannier functions ∣W i⟩ Eq. (12) are in real space repre-
sentation. Sometimes, it is useful to define the reciprocal space
representation ∣W⃗k

i ⟩ for them,

∣WT⃗
i ⟩ =∑

⃗k

exp (−ik⃗T⃗)∣W⃗k
i ⟩,

∣W⃗k
i ⟩ =∑

α
∣ψα⃗k ⟩⟨ψ

α
⃗k ∣ϕi⟩.

(13)

Here, T⃗ is the translation vector, i is an atomic number in the crystal
unit cell, and α is a band number.

One can redefine the Hamiltonian and density matrix in a
Wannier function basis,

Ĥ =∑
⃗k
∑

ij
∣W⃗k

i ⟩H
⃗k
i j⟨W

⃗k
j ∣,

ρ̂ =∑
⃗k
∑

ij
∣W⃗k

i ⟩Q
⃗k
i j⟨W

⃗k
j ∣.

(14)

Then, the electronic energy E is

E = Tr (ρ̂Ĥ) =∑
⃗k
∑

ij
Q
⃗k
i jH

⃗k
ji

=∑
⃗k
∑

i
Q
⃗k
iiH
⃗k
ii +∑

⃗k
∑
ij,i≠j

Q
⃗k
i jH

⃗k
ji. (15)

To separate the electronic energy E in Eq. (15) into covalent
and ionic parts is not a trivial task. While the interatomic term
∑⃗k∑i j,i≠ jQ

⃗k
i jH

⃗k
ji = ∑i j,i≠ jEi j is clearly a covalent energy, the diagonal

in the atomic index term ∑iEii = ∑⃗k∑iQ
⃗k
iiH
⃗k
ii contains both contri-

butions: covalent energy for all atoms of type i in crystal and ionic
part of energy. To separate them, let us introduce the average energy
Hi = ∑⃗kH

⃗k
ii and average occupancy Qi = ∑⃗kQ

⃗k
ii for atom i. The ionic

part can be defined as Eion
i = QiHi, and the covalent part can be

defined as Ecov
i = Eii −QiHi. The electronic energy E in Eq. (15) can

be written as

E = Ecov + Eion,

Eion =∑
i

Eion
i =∑

i
QiHi,

Ecov =∑
ij,i≠j

Eij +∑
i

Eii −∑
i

QiHi.

(16)

In a general case with orbital indexes L = (l, m), Eq. (15) is

E = Tr (ρ̂Ĥ) =∑
⃗k
∑
iL,jL′

Q
⃗k
iL, jL′H

⃗k
jL′ ,iL

=∑
⃗k
∑
iL,iL′

Q
⃗k
iL,iL′H

⃗k
iL′ ,iL +∑

⃗k
∑
iL,jL′

Q
⃗k
iL, jL′H

⃗k
jL′ ,iL. (17)

For binary compound AB, the chemical bonding energy [Eq. (9)] is

Ebond = EAB − (E∞A + E∞B )
= Ecov + Eion − (H∞A Q∞A +H∞B Q∞B ). (18)

The following approximation could be useful:

H∞A = HA =∑
⃗k

H
⃗k
AA,

H∞B = HB =∑
⃗k

H
⃗k
BB.

(19)
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Then, from Eqs. (18) and (16),

Ebond = Ecov + Eion − (HAQ∞A +HBQ∞B ),
Eion = Eion

A + Eion
B = QAHA +QBHB,

Ecov = 2EAB + EAA −QAHA + EBB −QBHB.

(20)

Hence, the bonding energy separation is

Ebond = Ecov
bond + Eion

bond,

Eion
bond = Eion

A + Eion
B − (HAQ∞A +HBQ∞B )

= (QA −Q∞A )HA + (QB −Q∞B ))HB,

Ecov
bond = Ecov = 2EAB + EAA −QAHA + EBB −QBHB.

(21)

The covalent contribution to the bonding energy Ecov
bond in

Eqs. (20) and (21) contains, by definition [see Eq. (16)], only
off-diagonal terms of Hamiltonian and density matrices in the
Wannier basis having atomic orbital symmetry [Eq. (14)]. Hence,
it directly corresponds to the usual chemical understanding of
covalent bond between atomic orbitals. However, the ionic part
is defined by contribution from diagonal terms of those matri-
ces minus (HAQ∞A +HBQ∞B ) term. Hence, it contains not only an
ion–ion interaction in crystal but also the energy of transferring the
electrons to/from the neutral atoms forming charged ions.

III. COMPUTATIONAL DETAILS
All DFT calculations were conducted using the Quantum

ESPRESSO suite with the standard solid-state pseudopotentials
(SSSP) Perdew–Burke–Ernzerhof (PBE) Precision v1.3.0 library.21,22

The kinetic energy cutoff for the plane wave wavefunction expan-
sion was set according to the recommendations provided in the
SSSP library for each element. An integration in the reciprocal space
was performed on a regular 16 × 16 × 16 k-point mesh covering
the Brillouin zone. The construction of Wannier function basis and
the determination of the Hamiltonian and occupation matrix ele-
ments were carried out using the wannier_ham.x19 code integrated
into Quantum ESPRESSO. Only Wannier functions with the sym-
metry of s- and p-atomic orbitals of the outermost electronic shell
for each ion were considered. To separate the electronic energy into
covalent and ionic parts, we employed an in-house Python script
implementing Eqs. (20) and (21).

IV. RESULTS AND DISCUSSION
Table I gives the atomic charges (calculated as occupancy num-

bers of the corresponding Wannier functions) and the ionic and
covalent parts of the cohesive energy for a number of relatively
simple substances. One can see the following:

(1) The degree of ionicity (which is usually defined as the ratio
of effective charges of the atoms to their valence) and the
ratio of the ionic to covalent energy components increase as
the electronegativity difference increases. For example, ele-
mental silicon has 0% ionicity, AlN is 35% ionic, whereas the
degree of ionicity is equal to 57% for LiH, 81% for NaCl, and
83% for CsF. All of this is fully consistent with chemical intu-
ition. Some results are less intuitive: zinc blende (ZnS) has
just 1.5% degree of ionicity.

(2) Zinc blende-type BP is very much anomalous, having inverse
charges, opposite to what is expected from atomic elec-
tronegativities: The B atom has a negative charge of −0.68,
whereas the P atom has a positive charge of +0.68. Unex-
pectedly, the degree of covalency exceeds 100% (it equals
102%) and the ionic contribution to the cohesive energy is
positive (destabilizing). These anomalies require an explana-
tion. We note that the ionic contribution is defined here as
a sum of the electrostatic (Madelung) energy and the energy
of modifying the atoms from neutral (as in isolated atoms) to
charged (as in the crystal). Wherever the ionic contribution
is positive, the degree of covalency is greater than 100%. The
ionic contribution is positive only when the energy of mod-
ifying atomic wavefunctions is so positive that it outweighs
the Madelung energy. For BP with inverted charges (positive
for P and negative for B), moving electrons from lower-
energy orbitals of P to higher-energy orbitals of B increases
the energy and results in a positive ionic term—however,
this unfavorable charge transfer serves to strengthen covalent
bonding.

(3) We also observe inverted ionic charges for the CO molecule.
The atomic charges in CO molecule have been addressed
in numerous studies, and it was established that its dipole
moment corresponds to inverted charges, negative for C
and positive for O.23 This has interesting consequences—e.g.,
F–H. . ..C–O hydrogen bond complexes, where, indeed, the
C atom of the CO molecule plays the role of a negatively
charged atom.24 Similarly, CO molecules adsorb on metal-
lic clusters so that the carbon atom is in direct contact with
metal atoms.25 Such inverted charges can be easily under-
stood using the Zintl–Klemm rule: atom of group N, when
losing an electron structurally, behaves like an atom of group
N−1 and, when gaining an electron, behaves like an atom of
group N+1. The carbon atom can form four bonds, but oxy-
gen can only form two bonds; thus, the simplest electronic
structure C=O leaves two valences of carbon unused. If the
oxygen atom loses an electron to carbon (which by itself is
unfavorable), we get O+ and C− atoms, each of which is
isoelectronic to the nitrogen atom and capable of forming
three covalent bonds in the molecule C−≡O+—and this is
much more favorable, as it enables much stronger covalent
bonding.

(4) Effective atomic charges (Table I) are significantly smaller
than the formal ionic charges corresponding to the atomic
valence. Ionic energy must be proportional to the square of
the ionic charges Z, as in the Madelung formalism, so the
percentage of ionic contribution to the bond energy should
be defined by the value of (Z/Z0)2, where Z0 is the formal
ionic charge. In Table II, we compare this simple estimation
with the full calculation using formula (21). The agreement
is remarkably good. This means that the reduction of ionic
charges from the formal values due to covalency could serve
as a good estimation of the percentage of ionic and covalent
contributions to the bond energy.

A. The peculiar case of BP
The result for BP with the reversed cation–anion charges

(+0.68 on phosphorus and −0.68 on boron ions) looks unusual and
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TABLE I. Atomic charges and contributions to bond energies for select crystalline compounds and CO molecule.

Compound Structure type and space group Atomic charges Eion (eV/f.u.) Ecov (eV/f.u.) Ebond (eV/f.u.) R = Ecov/Ebond

LiF Rock salt (Fm-3m) Li: 0.70, F: −0.70 −7.410 −7.508 −14.918 0.50
NaF Rock salt (Fm-3m) Na: 0.87, F:−0.87 −8.708 −2.824 −11.531 0.24
KF Rock salt (Fm-3m) K: 0.87, F:−0.87 −7.161 −2.189 −9.349 0.23
RbF Rock salt (Fm-3m) Rb: 0.90, F:−0.90 −6.963 −1.534 −8.496 0.18
CsF Rock salt (Fm-3m) Cs: 0.83, F:−0.83 −5.375 −2.335 −7.710 0.30
LiH Rock salt (Fm-3m) Li: 0.57, H:−0.57 −2.625 −6.637 −9.261 0.72
Si Diamond (Fd-3m) Si: 0 −0.000 −37.371 −37.371 1.00
BP Zinc blende (F-43m) B: −0.68, P: 0.68 0.815 −50.648 −49.833 1.02
NaCl Rock salt (Fm-3m) Na: 0.81, Cl: −0.81 −5.918 −3.176 −9.094 0.35
KBr Rock salt (Fm-3m) K: 0.76, Br: −0.76 −4.333 −3.159 −7.492 0.42
KI Rock salt (Fm-3m) K: 0.76, I: −0.76 −3.842 −2.791 −6.633 0.42
AlN Zinc blende (F-43m) Al: 1.06, N: −1.06 −7.833 −45.393 −53.226 0.85
BN Hexagonal (P6_3/mmc) B: 0.52, N: −0.52 −2.760 −64.179 −66.939 0.96
CaF2 Fluorite (Fm-3m) Ca: 1.33, F: −0.67 −13.155 −14.585 −27.740 0.53
ZnS Zinc blende (F-43m) Zn: 0.03, S: −0.03 −0.118 −34.490 −34.608 1.00
MgO Rock salt (Fm-3m) Mg: 1.66, O: −1.66 −13.606 −6.880 −20.487 0.34
MgS Rock salt (Fm-3m) Mg: 1.60, S: −1.60 −7.984 −5.335 −13.320 0.40
Al2O3 Corundum (R-3c) Al: 1.84 O: −1.23 −33.024 −61.696 −94.720 0.65
SiO2 α-quartz (P3_12-1) Si: 2.65, O: −1.33 −23.678 −34.339 −58.017 0.59
CO molecule C: −0.52, O: 0.52 −3.683 −23.022 −26.705 0.86

TABLE II. Atomic charges and estimates of the degree of ionicity. Degree of ionicity
is usually defined as the ratio of the effective atomic charge to the formal charge.
Coulomb energy is then proportional to the square of the degree of ionicity, and we,
indeed, see a close similarity between the ionic contribution to binding energy and the
square of the degree of ionicity.

Compound Atomic charges Z/Z0 (Z/Z0)2 1 − Ecov/Ebond

LiF Li: 0.70, F: −0.70 0.7 0.49 0.50
NaF Na: 0.87, F: −0.87 0.87 0.76 0.76
KF K: 0.87, F: −0.87 0.87 0.76 0.77
RbF Rb: 0.90, F: −0.90 0.9 0.81 0.82
CsF Cs: 0.83, F: −0.83 0.83 0.69 0.70
LiH Li: 0.57, H: −0.57 0.57 0.32 0.28
NaCl Na: 0.81, Cl: −0.81 0.81 0.65 0.65
KBr K: 0.76, Br: −0.76 0.76 0.58 0.58
KI K: 0.76, I: −0.76 0.76 0.58 0.58
AlN Al: 1.06, N: −1.06 0.35 0.13 0.15
BN B: 0.52, N: −0.52 0.17 0.03 0.04
CaF2 Ca: 1.33, F: −0.67 0.67 0.45 0.47
ZnS Zn: 0.03, S: −0.03 0.03 0 0
MgO Mg: 1.66, O: −1.66 0.83 0.69 0.66
MgS Mg: 1.60, S: −1.60 0.8 0.64 0.60
Al2O3 Al: 1.84 O: −1.23 0.61 0.37 0.35
SiO2 Si: 2.65, O: −1.33 0.67 0.44 0.41

requires explanation. In all electronegativity scales, phosphorus is
more electronegative than boron and should attract electrons from
boron onto itself, but we see exactly the opposite. Let us explain
this anomaly. Consider the case of neutral B and P atoms; in the

covalent case, each of these atoms can form three ordinary (2-center
2-electron) bonds. If we form (at first counterintuitive) B− and P+

ions, then each of these ions can form four bonding electron pairs
(four ordinary covalent bonds), thus strengthening covalent bond-
ing. If the increase in energy due to the formation of these inverse
charges (which is what makes Eion of BP positive; see Table I) is out-
weighed by the effect of covalent bond strengthening, then inverse
charges will be formed. BP can also be understood on the basis of
the Zintl–Klemm rule, which draws a structural analogy between
charged atoms and neutral atoms of other groups in the Periodic
Table.

Here, we talk about the occupation numbers for the Wan-
nier functions contrary to an integrated charge inside some atomic
spheres. The squared Wannier functions (representing correspond-
ing charge distribution) for boron and phosphorous along the B–P
bond are shown in Fig. 1. It is clear that the Wannier function for
P (Fig. 1, central panel) is much more compact, and its charge is
very small at the B–P bond midpoint. The squared Wannier func-
tion for the boron atom (Fig. 1, left panel) is more spread out and
has a nonzero contribution in the region close to the P ion. This
means that the electrons located near the phosphorus atom in BP
originate partially from the spatially extended states of the boron
atom.

At the same time, if one takes a look at the charge density cor-
responding to the bonding molecular orbital (Fig. 1, right panel),
which corresponds to a linear combination of the anion and the
cation Wannier functions, there is no contradiction with the tradi-
tional picture of asymmetric covalent bonding: the charge density
maximum is, indeed, located closer to the phosphorus ion.

That is, phosphorus is more electronegative than boron, as it
should be. An analysis of the orbital occupation numbers gives the
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FIG. 1. Section of the squared Wannier functions centered on the boron (left panel) and phosphorous (central panel) ions. Right panel: Section of the squared bonding
molecular orbital.

same conclusions. For a boron ion, the occupation of the sp3 orbital
is 0.92, and for phosphorus it is 1.08. Therefore, the orbitals of
boron are less populated than the orbitals of phosphorus. For the
whole atom, the number of valence electrons for boron is 3.68, and
for phosphorus, it is 4.32. Consequently, the phosphorus ion has
0.64 more electrons than the boron ion, as should be for a more
electronegative ion. However, compared to neutral atoms (which
have 3 and 5 valence electrons for B and P, respectively), we obtain
+0.68 charge on P and −0.68 on B atoms.

We consider static charges, related to redistribution of charge
density as a result of chemical bonding. Earlier, it was calculated
that Born dynamical charges (related to polarization induced by
atomic displacements) show the same anomaly in BP and related
compounds: these charges on the B atom are −0.75 in BP, −0.57 in
BAs, and −1.30 in BSb.26

The explanation of the paradox is very simple: if one imagines
the limit of purely covalent bonding with equal sharing of the elec-
trons between B and P atoms in this tetrahedral structure, this will
imply four valence electrons on each atom and automatically lead
to the charge of −1 on B and +1 on P atoms. Note that since in the
purely covalent case the charges are non-zero, the usually assumed
relationship between the charges and the degree of ionicity (f =Q/Z)
is a gross simplification. Note also that the electronegativity differ-
ence will lead to redistribution of electron density (shifting it to
the more electronegative phosphorus atom) and change the atomic
charges. Both of these effects need to be considered to get quan-
titative results. To delve deeper into the physics of our results, we
developed a simple model.

B. Simple two-orbital model
All the results presented in Table I for compounds with various

types of bonding can be described with a simple and straightforward
model including only two orbitals.

The most important parameters in our calculation scheme
are HA, HB—atomic energies [diagonal terms of the Hamiltonian
equation (14)] or their difference ΔE = HA −HB and off-diagonal
Hamiltonian matrix terms HAB = t. The first one determines the
tendency to form ions from neutral atoms, and the second one is
responsible for the covalent bonding between the atoms. It is use-
ful to consider the simplest model containing these parameters and
compare it with our full calculation results. We will use notation
orbital 1 for atom A and orbital 2 for atom B.

FIG. 2. Difference of orbital occupations for the model (solid line). Mapping of the
results of DFT calculation onto the two-band model (symbols).

Let us assume that we have two different atoms with one par-
tially filled orbital on each atom (two electrons in total). Then, the
Hamiltonian of the system is

H = (E t
t E − ΔE

), (22)

where E is the energy level of the first orbital (the higher one) and
the second atom has the orbital energy which is ΔE lower than the
first one. The hopping energy t describes hybridization between the
orbitals. From the eigenvectors of the model Hamiltonian matrix
[Eq. (22)], one can get occupation numbers for two orbitals (Q1
and Q2) and then calculate the charge transfer Q2 −Q1 from the
first to the second atom. The corresponding curve as a function of
the ratio t/ΔE is presented in Fig. 2. One can see that the larger the
t/ΔE value, the smaller is charge transfer Q2 −Q1 that characterizes
ionicity.

At first, we apply this model to LiH, which is very close to
the model: both atoms have a non-degenerate s-orbital with one
electron on them for neutral atoms. The essential difference is that
every atom has not one but six bonds with the other type atoms
in its rock salt crystal structure, or in other words, the number
of hybridization channels N = 6. From perturbation theory, it is
known that having several equivalent hybridization channels can be
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approximated in single orbital per atom model by using the effec-
tive hybridization term calculated as

√
Nt. We take the E,ΔE, and t

parameters from diagonal and off-diagonal elements of the calcu-
lated Hamiltonian matrix for LiH in the Wannier function basis.
The charge transfer QH −QLi obtained in our Wannier function for-
malism lies very close to the model curve. The same mapping of
the model was done for other compounds with the rock salt crystal
structure: NaF, NaCl, MgO, and MgS (see Fig. 2) with good results
showing these compounds to be predominantly ionic having the
ratio t/ΔE < 1.

The last three compounds AlN, BP, and ZnS have the zinc
blende type structure usual for semiconductors. For them, Q2 −Q1
was calculated for a single sp3 orbital pair. In the pair, an orbital of
the first atom is oriented directly to the orbital of the neighboring
atom and the corresponding interaction has the largest hopping t
value. The comparison with the model curve is also very good, giving
mixed ionic–covalent nature of bonding.

The atomic charges can be calculated from Q2 −Q1 in
the following way: I1 = Q∞1 −Q1, I2 = −I1, I1 = ((Q∞2 −Q∞1 )
− (Q2 −Q1))/2, where Q∞1 and Q∞2 are occupations for the cor-
responding neutral atoms. (Please note that for the zinc blend
type structure, total atomic occupancy can be obtained from sin-
gle orbital occupancy by multiplying it on 4 that is a number of sp3

orbitals).
For BP, this formula gives a negative charge of −0.68 for boron

and a positive charge of +0.68 for phosphorus because covalency is
strong enough (and the ratio t/ΔE is much larger than 1) to make
the total number of electrons on boron is 3.68 (larger that its neutral
atom value Q∞B = 3), while for phosphorus, it is equal to 4.32 (smaller
than Q∞P = 5).

V. CONCLUSIONS
We present a first-principles procedure for determining effec-

tive atomic charges and perform decomposition of the cohesive
energy into ionic and covalent terms based on the Wannier func-
tion formalism. This method was applied to various compounds
with typical ionic, covalent, and mixed bonding nature and has
shown good results. In diamond-like BP, we find “inverse” charges
of +0.68 on phosphorus and −0.68 on boron atoms, which agrees
well with earlier calculated Born dynamical charges26 (related to
polarization induced by atomic displacements). We explain why the
same anomaly is present also in static charges, and our explanation
is based on the Zintl–Klemm rule and the tendency to maximize
the covalent bonding strength. We develop a simple model, includ-
ing the energy difference between the orbitals of the interacting
atoms and the strength of their hybridization. The effective charges
obtained in our Wannier calculations agree very well with this
model.

It will be interesting to apply our approach to various
non-trivial cases, such as:

(1) Donor–acceptor bonds (where the more electronegative
atom donates an electron pair to form a bond with a
less electronegative atom, somewhat similar to what we
discussed for BP). Hydrogen bonds are an important case of
such bonds.

(2) Compounds with high oxidation states (such as KMnO4
27).

(3) Exotic high-pressure compounds, such as Na3Cl, Na2Cl,
NaCl7,28 and Na2He.29
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