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Abstract: The correlations of values of the crystal structure
complexity indices were calculated using the major modern
approaches (10 indices in total), in particular, those, pro-
posed by Krivovichev, Oganov, the concept of implicit hier-
archical depth, aswell as, for the comparison, themeasure of
regularity of (r, R)-system introduced by Blatov. To find the
correlations, a series of 33 mercury-containing mineral
structures with a non-repeating system of crystallographic
positions occupied by atoms without any partial occupancy
was used. It was shown that almost all pairs of complexity
indices are statistically significantly (p < 0.05) positively or
negatively correlated. The discriminating power of the
indices for the set of structureswas calculated. It is discussed
that all the indices can be used to assess the complexity for
any series of the crystal structures, but each of them has its
particular advantages and limitations.

Keywords: mercury minerals; combinatorial complexity;
hierarchical depth; degree of order; quasi-entropy

1 Introduction

The interest in studying the crystal structure complexity is
primarily related to Pauling’s fifth rule which is also called
the rule of parsimony and which can be formulated as
follows: “the number of essentially different kinds of con-
stituents in a crystal tends to be small” [1]. The complexity of
crystal structures can be easily characterized using a Shan-
non functional [2] which has been retaining popularity in
mathematical chemistry for many decades [3–6]. In this
approach, the crystal structure represents a “message” in
which the symbols are atoms, and the positions that the
symbols occupy correspond to the crystallographic orbits
(occupied by the atoms). The calculation is carried outwithin
one reduced (primitive) cell of the crystal structure because
the translations do not actually increase the amount of
information, since they repeat the same structural fragment
in all directions. Such approach for the calculation of the
crystal structure complexity can be called combinatorial,
or Krivovichev complexity. The concept of combinatorial
complexity was further significantly extended by Horn-
feck [7, 8] and applied to crystal structures with any
positional disorder by Kauβler and Kieslich [9, 10].

Another approach to estimate the complexity of crystal
structureswas proposed and developed byOganov and Valle
[11–13]. As a measure of the simplicity of the crystal struc-
ture, this approach uses two special functionals, viz. the
degree of order and quasi-entropy, both calculated from the
integral characteristics of the positions of atoms. An
important advantage of these functionals is that, unlike
combinatorial complexity, a small change in the positions of
atoms leads to a small, rather than abrupt, change in the
functional. The structural degree of order carries informa-
tion about how narrow the peaks of the pair correlation
function over the distances are and how symmetric their
local environments are. There is a relationship between the
degree of order and the structure amplitude of the crystal
[11]. Another measure of complexity, quasi-entropy, in-
dicates the presence of different building blocks in the
structure. The quasi-entropy of the structure grows with
increasing diversity of the coordination environment of
atoms of the same element. According to the results of the
study [11], it was concluded that “the ground state normally
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adopts one of the simplest structures compatible with the
chemistry of the compound. Such structures tend to have
lower [free] energies” and that “in the ground state and
low-energy structures, atoms of each species tend to occupy
similar crystallographic sites”. Thus, for a thermodynami-
cally controlled crystallization, simpler structures have an
advantage over more complex ones. Let us call the degree of
order and quasi-entropy the Oganov complexity of crystal
structures.

An alternative approach to estimate the complexity of a
crystal structure is to calculate the implicit hierarchical
depth (IHD) with respect to the initial structural units, which
should not be confused with explicit hierarchical depth (see
[14]). The value of IHD is equal to the smallest number of
equivalence classes of edges linking structural units into a
simply connected net. The calculation of implicit hierarchi-
cal depth is especially useful for molecular crystals with
weak van der Waals interactions, for which other types of
complexity reflect the complexity of molecules themselves
rather than the packing of these molecules. Since the hier-
archical organization of molecular crystals at the supramo-
lecular level is often not obvious, their hierarchical depth is
inherently implicit. The parsimony of the structures of
molecular crystals is manifested in the fact that the number
of intermolecular contacts ranked in descending order of
interaction energy and sufficient to form the observed
crystal structure, is either equal to IHD, or (less often)
slightly exceeds it [15].

Any crystal structure can be considered as a multi-
regular (multi-orbit) (r, R)-system (Delone point system), in
which the r-neighborhood of each point of the system does
not contain other points of the system, and the R-neighbor-
hood of each point of space contains at least one more point
of the system [16]. The uniformity of this system can be
characterized by the combined parameter G3, which is the
second moment of inertia of the Voronoi–Dirichlet poly-
hedron (VDP) of a point averaged over all points of the
system [17] and reflects both the geometric parameters of a
Delone system, r and R. As the uniformity of the point system
decreases, the value of G3 increases. Among the periodic
lattices, the smallest value G3 = 0.07854 corresponds to the
base-centered cubic (b.c.c.) lattice. According to the results of
the calculation of G3 for the crystal structures of elements,
Blatov et al. [17] concluded that in a thermodynamically
stable structure, atoms and groups of atoms, between which
just non-directional interaction forces act, tend to arrange
themselves in space so that their centers of mass reach the
lowest value of G3.

The purpose of this work is to compare the results
obtained using three approaches to complexity assessment
(Krivovichev, Oganov and IHD) for the series of structures of

mercury-containing minerals. The parameter G3, despite the
fact that simplicity and uniformity are not exactly the same
thing, was also added to the list of comparable complexity
indices. The series of structures used is valuable for the va-
riety of both chemical composition (from 2 to 5 or more
elements included in the composition) and types of chemical
bonds, as well as structure dimensionalities (heterodesmic
structures with any dimension of the structural motif and
homodesmic structures are present in the series; homo-/
heterodesmic is usually understood as those with possible/
impossible bypassing all the atoms over the shortest inter-
atomic bonds). Some of the structural data used in the work
were obtained by the group of Prof. Stanislav V. Borisov1

[18, 19], in particular, synthetic analogues of aktashite [20],
grechishchevite [21], kelyanite [22], poyarkovite [23] and
radtkeite [24].

2 Methods

2.1 Structural data

A total of 218 records containing mercury atoms were available in
AMCSD [25] at the time of structural data selection. From these data, the
selection was made in accordance with the following criteria: (1) the
mineral has its nomenclature name; (2) the atomic coordinates for all
the elements of the compound are known; (3) the occupation of all
positions occupied by atoms is full. In the presence of several structural
entries, single crystal X-ray diffraction data were preferred to neu-
tronography and powder diffraction data. A total of 37 entries were
selected. Some of the entries occurred to correspond to structures with
the same system of points (isopointal structures), which have the same
type of space group and in which the same Wyckoff positions are
occupied [26]. In particular, these are the mercury halides calomel,
kuzminite and moshelite belonging to the same structural type, as well
as the mercury chalcogenides metacinnabar, timannite and coloradoite
belonging to the structural type of sphalerite. Of these sets, only one
structure (calomel andmetacinnabar) was left for further analysis. Also,
the same systems of points are occupied in the crystal structures of
chursinite and tvalchrelidzeite (Table 1), despite the different setting of
the same space-group type (P21/c and P21/n, respectively). However,
compositions of chursinite and tvalchrelidzeite have a different number
of elements (three and four, respectively), so both of these structures
were left for analysis. In total, there were n = 33 structural records left.

1 Prof. Stanislav V. Borisov (07.07.1930–18.02.2023) was a principal
researcher at Nikolaev Institute of Inorganic Chemistry, Siberian
Branch of Russian Academy of Sciences, and was one of the pioneers of
applying the systematical analysis of the Patterson function into the
X-ray analysis to solve the phase problem [41, 42]. He made a significant
contribution to the crystal chemistry of natural and synthetic com-
pounds with heavy elements and proposed and developed the original
approach for the analysis of the crystal structures based on the stable
cationic nets [43, 44].
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2.2 Krivovichev complexity

The calculation of combinatorial complexity was carried out according
to the ordinary Shannon formula [2]:

IG = −∑
k

i=1
pi log2 pi (bit/atom), (1)

where pi = vi/v is the probability offinding some atom in the ith orbit, vi is
the multiplicity of this orbit, v is the sum of the multiplicities of all
occupied orbits. The total complexity of the entire reduced cell was
calculated as

IG, tot = vIG. (2)

The normalized complexity was calculated with respect to the
maximum possible value of IG for a given v:

IG,norm = IG/IG, max = IG/ log2 v. (3)

For instance, for one of the simplest structures, calomel (Hg2Cl2, or
HgCl, see Table 1), the reduced cell is twice smaller than the conventional
one, as the latter is body-centered (I4/mmm). Thus, for the two occupied
orbitswith the sameWyckoff letter e and equal vi = 2, one obtains IG = −2·
(2/4)·log2(2/4) = 1.0 bit/atom, IG,tot = 4·1.0 = 4.0 bit/cell, and IG,norm = 1.0/log2
4 = 0.5.

2.3 Oganov complexity

The method proposed by Oganov and Valle utilizes a matrix F called
“fingerprints” of a crystal structure, with the matrix elements being the
values of FAB distance function:

FAB(R) = ∑
Ai

∑
Bi

δ(R − Rij)
4πR2

ij(NANB
Vu.c. )Δ − 1, (4)

whereRij is the distance between atoms, δ(R – Rij) is the Dirac δ-function, i
runs through allNA atoms of elementAwithin the unit cell of volumeVu.c.,
j runs through NB atoms of element B within Rmax, the value of which
should be chosen to be large enough to yield converging results. The R
parameter in formula (4) should not be confusedwith that of (r, R)-system
(Delone point system). Before summation, each peak of the δ-function is
approximated by a normal distribution with a user-adjustable standard
deviation value σ (usually σ = 0.02 Å), and then transformed into a histo-
gramwith analso adjustable barwidthΔ (usuallyΔ = 0.05 Å) [12] (Figure 1).
To assess the similarity of two “fingerprints”, the value of the FAB function
is represented as a vectorFAB in (Rmax/Δ)-dimensional space. Thedegree of
order is calculated using the function

PAB = NB

Vu.c.
∫

Rmax

0
F2
AB(R)R2dR. (5)

For the whole structure

P = ∑
A,B
wABPAB, (6)

wAB = NANB

∑
u.c.
NANB

. (7)

The quasi-entropy is calculated using the formula [11]:

Sstr = −∑
A

NA

N
(1 − DAiAj)ln(1 − DAiAj), (8)

where N is the total number of atoms in an elementary cell, DAiAj is the
cosine distance between the vectors FAiAj calculated separately for the
ith and jth positions occupied by the atoms of element A.

Later Lyakhov et al. [13] introduced the value of the local degree of
order for the atom Ai:

Πi =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑
B

NB

N
Δ

(Vu.c./N)1/3
⃒⃒⃒⃒
FAiB

⃒⃒⃒⃒2√
, (9)

which is then used to calculate the average value of <Π> for all atoms in
the crystal structure.

Table : Mercury-containing minerals with full occupation of crystallo-
graphic positions.

Space
group

Wyckoff let-
ter sequence

Name Formula Refcode in
AMCSD

P iea Deanesmithite HgCrSO 

Aa a Laffittite HgAgAsS 

C/m jib Edgarbaileyite HgSiO 

ica Grumiplucite HgBiS 

jihf Radtkeite HgSICl 

P/c* ea Imiterite HgAgS 

e Christite HgTlAsS 

e Chursinite HgAsO 

Tvalchrelidzeite HgSbAsS 

e Edoylerite HgCrSO 

e Simonite HgTlAsS 

C/c* f  Aurivilliusite HgOI 

f ec Terlinguaite HgOCl 

f ea Wattersite HgCrO 

feb Livingstonite HgSbS 

f Poyarkovite HgOCl 

Pbm dc Magnolite HgTeO 

Aba ba Vrbaite HgTlSbAsS 

Pbma edca Hanawaltite HgOCl 

Pnma* c Montroydite HgO 

dc Grechishchevite HgSIBrCl 

Ibam kjfa Pinchite HgOCl 

P/
mmm

da Potarite HgPd 

P/nmc da Coccinite HgI 

I/mmm e Calomel HgCl 

Kuzminite HgBr 

Moschelite HgI 

P dcba Kelyanite HgSbOBrCl 

R ba Aktashite HgCuAsS 

P ba Cinnabar HgS 

Pm ieda Jacutingaite HgPtSe 

P ba Kuznetsovite HgAsOCl 

I ba Corderoite HgSCl 

Fm ca Metacinnabar HgS 

Tiemannite HgSe 

Coloradoite HgTe 

Iad hge Eglestonite HgOCl 

*in different settings
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For instance, for calomel, in which each of the two elements (Hg
and S) occupies exactly one orbit, Sstr = 0. Fortunately, the degrees of
order for this structure are non-zero: P = <Π> = 5.77.

2.4 Hierarchical depth

The initial adjacency matrix of atoms not needed for calculating Kri-
vovichev and Oganov complexities (Figure 2a) and different from that
conventional for chemists (Figure 2b) was constructed by the method of
solid angles for all Ωat > 0. The net obtained in this way (Figure 2c) is the
Delone graph [27]. The alternative domain method widely used in
constructing models of crystal structures [17], also allows one to build a
Delone graph, but takes into account the chemical characteristics of
atoms of different elements and attributes the different types of chem-
ical bonds to the edges of the graph, which does not matter for the
current problem. While considering the midpoints of the edges of the
Delone graph as “atoms” (Figure 2d), its edge combinatorial complexity
Hedge was calculated using the formula similar to (1) and those recently
used for molecular crystals [28, 29].

Next, a critical net [30] was found in the Delone graph, containing
the minimal necessary number of edges for the net to be simply con-
nected, and all edges were subsequently removed from it. Then the
edges were gradually added back, building all possible graphs first with
one class of edges equivalent with respect to the space group, then with
two equivalence classes, three equivalence classes etc., until a simply
connected graph was obtained (Figure 3a). Usually, aside from such a
subgraph of the critical net, there are many other ways to connect
structural units into a simply connected graph (Figure 3b–f), however,
all of these graphs must have the least number (IHD) of equivalence

classes of edges. Unlike an ordinary crystallographic netwith all vertices
being not less than 3-coordinated, a simply connected subgraph of the
Delone graphmay have 2-coordinated (Figure 3d) or even 1-coordinated
(Figure 3c) vertices. According to [31], the value of IHD depends on the
space group and the list of Wyckoff positions (WP) occupied by the
structural units, viz.:

IHD ≡ inf(e″) = |USG| + Z″ – 1 – f (WP1,WP2,…,WPZ″ ), (10)

where e" is the number of equivalence classes of edges in the Delone
graph, |USG| is the number of elements in anyminimal generating subset
of the space group, Z" is the total number of orbits occupied by the
structural units, and the parameter f(WP1, WP2,…, WPZ″) is influenced
by the site-symmetry groups of occupied positions. In the simplest case,
when structural units occupy only general positions, f = 0.

For calomel (Figures 2 and 3), in the Delone graph the vertices
corresponding to Hg and S atoms are 10- and 14-coordinated, respec-
tively. However, all the edges fall in the e″ = 7 equivalence classes with
respect to the group I4/mmm. The midpoints of the edges occupy
Wyckoff positions mg2feba (vi = 16, 8 × 2, 8, 4, 2, and 2, respectively), in
accordance with (1) resulting in Hedge = 2.502 bit/edge. Out of the seven
equivalence classes, six combinatorially different triples are sufficient to
make the graph simply connected (IHD = 3).

2.5 Discriminating power

According to [32], a discriminating power of typology, depending on the
probability of two unrelated objects to belong to the same type, can be
represented as a parameter:

Figure 1: FAB(R) for the crystal structure of calomel at σ = 0.02 Å, Δ = 0.05 Å, Rmax = 30 Å.
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D = 1 − 1
n(n − 1) ∑

s

j=1
xj(xj−1), (11)

where n is the number of unrelated objects (in our case, structures), s is
the number of types in themodel, xj is the number of objects assigned to
the jth type in the model, and the types should not overlap. Thus, D = 1
shows that the typology is able to distinguish all the objects in the
sample. When D = 0, all objects are classified as of the same type. D = 0.5
means that a randomly selected sample object has 50 % probability to
belong to the same type than the next randomly selected object. In [32],
the formula (11) was applied to microbiological taxons. In this work two
structures are considered to belong to the same type if the values of a
certain complexity index for them are equal.

2.6 Software

Calculations of all combinatorial complexities, IHD and G3 were per-
formed in ToposPro ver. 5.5.2.0 software package [33]. Calculations of
Oganov complexities were performed using Fingerprints utility [34]
with values σ = 0.02 Å, Δ = 0.05 Å, Rmax = 30 Å.

3 Results and discussion

Table 2 shows the paired linear correlation coefficients for
the indices used. The level of statistical significance p < 0.05

Figure 2: Unit cell of calomel, view along [421],
represented as: not connected atoms (a),
covalently connected atoms (b), the Delone
graph (c), edge midpoints of the Delone
graph (d).
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at n = 33 corresponds to the correlation coefficient of 0.344
and more. Only G3 does not have a statistically significant
correlation with other indices confirming that complexity
and uniformity are different properties of a system of points.
As it was shown by the values of Hedge and G3 calculated via
the centers of mass of organic molecules in the structures of
organic minerals [35], an increase in the diversity of inter-
molecular contacts does not necessarily entail an increase in
the non-uniformity of the Delone system of centers of mass.

This conclusion is now confirmed for non-molecular struc-
tures, as well.

The next most weakly correlated value with the rest of
the indices is the normalized Krivovichev complexity IG,norm
statistically significantly (p < 0.05) correlated only with IG
and quasi-entropy. Seven indices, with the exception of G3,
IG,norm and <Π>, are statistically significantly positively or
negatively correlatedwith each other. The degrees of order P
and <Π> demonstrate a strong positive correlation between

Figure 3: Unit cell of calomel, view along [421],
represented as the critical net (a) and other
subgraphs of the Delone graph (b–f) with the
least number (IHD) of equivalence classes of
edges.

Table : Pearson correlation coefficients for indices based on the series of mercury-containing mineral structures (n = ).

IG IG,tot IG,norm Sstr P <Π> e″ inf(e″) Hedge G

IG .
IG,tot . .
IG,norm . . .
Sstr . . . .
P −. −. . −. .
<Π> −. −. . −. . .
e″ . . . . −. −. .
inf(e″) . . . . −. −. . .
Hedge . . . . −. −. . . .
G . . . . −. −. . . . .
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themselves and a negative correlation with the other five
indices from the same seven ones. The Hedge value demon-
strates the best negative correlation with P and <Π>. In
general, this index is the only one among the specified seven
indices whose all correlation coefficients are greater than
0.75, which can be considered a strong correlation, so Hedge

looks in some sense the most universal index to take into
account various aspects of complexity of the crystal struc-
ture. The latter index is of a Shannon nature, but unlike the
ordinary combinatorial complexity it takes into account not
the division of vertices (atoms), but that of edges (bonds) into
equivalence classes. As atoms have no knowledge of space-
group types, their mutual arrangement is determined by
nothing more than a system of chemical bonds between
them, and energetic and therefore symmetric diversity of
them is ultimately expressed by the value of Hedge. For
molecular crystals in which the translational degrees of
freedom of individual atoms are strongly constrained by
chemical bonds within the molecule, it is Hedge that
determines the decisive difference in complexity for crystal
structures of the same structural class [29].

Logarithmic measures IG, Sstr andHedge naturally have a
better linear correlation with each other than with other
indices. Figure 4a shows a diagram of the correlation
between Oganov quasi-entropy and Krivovichev complexity,
which is approximated by a linear dependence with a high
coefficient of determination R2 = 0.91. The IHD depends on
Krivovichev complexity exponentially (Figure 4b), but also
with a high R2 = 0.94. Graphs similar to those, but sometimes
with a lower R2, can be obtained for other indices of the seven
most strongly correlated measures. Surprisingly, the IHD
increases clearly linearly with the increase in the number of
edge equivalence classes in Delone graph (Figure 4c). For
graphs with a different number of classes of equivalent
vertices, this correlation is predictable: the more symmet-
rically unequal vertices there are, the more unequal edges
there are in the critical net. For structures with the same
number of classes of equivalent vertices, this correlation is
less obvious and requires further verification on a larger
series of structures.

Calculating IHD without using a critical net is much
time-consuming computational task, since, in this case, in
order to test the connectivity of a net at each step of the
calculation algorithm it is required to construct Cie″ (a com-
bination, i.e. a selection of i edges from the set of e″ edges)
subnets of Delone graph for i = 1, 2,…, inf(e"). If the value of
e" is very large, then such a task becomes practically
impossible to solve in a reasonable time even using a su-
percomputer. For example, for the vrbait structure (e" = 100),
at the last step it would be necessary to test the connectivity
of С20100 = 535983370403809682970 subnets. Cutting offmost of

the edges with small solid angles of atomic VDP greatly
simplifies the task. Thus, even a rough construction of a
critical net for a vrbaite with a step of ΔΩat = 1.5 % lowers e"
from 100 to 25 and reduces Cie″ by about 16 orders of
magnitude. The idea of a critical net was recently developed
into the concept of a skeletal net [36], which is equally
conveniently applicable to both molecular and non-
molecular crystals, and the hierarchical analysis of struc-
tures in newer versions of ToposPro software package [33]
has become evenmore routine. Compared to the critical net,
the skeletal net has a weaker restriction (3D-periodicity
instead of 1-connectivity), which for some structures leads to
a mismatch of these nets, however, the skeletal net contains
more information about the nature of the structure. In

R² = 0.91

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.0 1.0 2.0 3.0 4.0 5.0

Sstr

IG

R² = 0.94

0

5

10

15

20

25

30

0.0 1.0 2.0 3.0 4.0 5.0

in
f(e
'' )

IG

R² = 0.93

0

5

10

15

20

25

0 20 40 60 80 100

in
f(e
'')

e''

(a)

(b)

(c)

Figure 4: Dependencies of quasi-entropy (a) and implicit hierarchical
complexity (b) on combinatorial complexity (bit/atom), and the depen-
dence of IHD on the number of equivalence classes of edges in the
reduced cell of theDelone graph (c) for the structures ofmercuryminerals
(n = 33).
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particular, the skeletal net is able to distinguish a frame-
work, inside the cavities of which there is a weakly bound
particle, as well as to distinguish some interpenetrating nets
[36]. For the instance of calomel mentioned above, the crit-
ical net and the skeletal net are identical (Figure 3a), in RCSR
[37] its topologic type having refcode fsx.

The degrees of order and G3 have the greatest discrim-
inating power among the considered indices (see formula
(11)) equal to 1, or 100 %, and IHD has the least one (∼96 %)
(Table 3). Quasi-entropy has approximately the same low
discriminating power, mainly due to the fact that seven
structures have Sstr = 0 (calomel, cinnabar, coccinite, imi-
terite, metacinnabar, montroydite and potarite). In these
structures, the atoms of each element occupy only one reg-
ular point system, which also means that the combinatorial
complexity of these structures coincides with the chemical
complexity (the Shannon complexity of the chemical for-
mula [38]).

4 Conclusions

The aim of this paper was not to cover all the possible
indices, which can be used for characterizing the
complexity of a crystal structure, but we looked only at
indices that can be obtained during automated (or semi-
automated, in case of hierarchical complexity) procedures
performed over a crystal structure using powerful and
freely distributed software. For example, the Baur distor-
tion index of a coordination polyhedron [39], the calcula-
tion of which is integrated into the popular program (also
with a free license) VESTA [40], in the current version of the
program cannot be automatically calculated as the average
value for all coordination polyhedra in the structure, which
makes the routine use of this index as a measure of
complexity almost impossible. As the summary, the Table 4
shows the advantages and limitations of utilizing the
considered indices.
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